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Batchelor (Phys. Fluids, vol. 12, 1969, p. 233) developed a theory of two-dimensional
turbulence based on the assumption that the dissipation of enstrophy (mean-square
vorticity) tends to a finite non-zero constant in the limit of infinite Reynolds number
Re. Here, by assuming power-law spectra, including the one predicted by Batchelor’s
theory, we prove that the maximum dissipation of enstrophy is in fact zero in
this limit. Specifically, as Re — oo, the dissipation approaches zero no slower than
(In Re)~/2. The physical reason behind this result is that the decrease of viscosity
enhances the production of both palinstrophy (mean-square vorticity gradients) and
its dissipation — but in such a way that the net growth of palinstrophy is less rapid
than the decrease of viscosity, resulting in vanishing enstrophy dissipation. This result
generalizes to a rich class of quasi-geostrophic models as well as to the case of a passive
tracer in layerwise-two-dimensional turbulent flows having bounded enstrophy.

1. Introduction

The evolution of an unforced two-dimensional incompressible fluid under the effects
of molecular viscosity is governed by the vorticity equation,

where g(x, y, t) is the vorticity, J(¢, ¢) = ¢y, — ¢y, v is the kinematic viscosity
and ¥ (x, y, t) is the streamfunction. The vorticity, streamfunction and fluid velocity u
are related by ¢ = Ay = -V x u, or equivalently u = (—y,, ¥,) = (—A~'gq,, A™1q,),
where i is the normal vector to the fluid domain. All fields are assumed to be periodic
in both x and y and to have zero average.

Equation (1.1) has been actively studied for decades. An important question
concerns the direct transfer of the mean-square vorticity (twice the enstrophy) and
its dissipation for high Reynolds numbers. This problem is interesting as it resembles
the direct transfer of energy and its dissipation in a three-dimensional fluid. In a
seminal work on this subject, Batchelor (1969) predicted that when an initial vorticity
reservoir spreads out in a virtually inviscid region of wavenumber space, an enstrophy
spectrum proportional to k~! forms in the ‘inertial range’. This uniform redistribution
of enstrophy among the wavenumber octaves of the inertial range eventually reaches
a scale around which viscous dissipation is considerable, resulting in a non-negligible
enstrophy dissipation rate. In the inviscid limit, this dissipation rate is assumed
to remain finite, i.e. the growth of the mean-square vorticity gradients (twice the
palinstrophy) is assumed to be proportional to v~ as v — 0.
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Batchelor’s theory has been vigorously examined, mostly by numerical methods
and qualitative analyses, and the research performed on this subject constitutes
an extensive literature (see, for example, Bartello & Warn 1996; Chasnov 1997;
Bracco et al. 2000; Davidson 2004; Dmitruk & Montgomery 2005). A recent result
by Tran (2005) provides an upper bound for the enstrophy dissipation (see below)
that depends only on the initial vorticity distribution. For the numerics, a major
challenge is to resolve not only the vorticity gradients responsible for the enstrophy
dissipation, but also the Laplacian Ag. This is because the palinstrophy dissipation
(and possibly its production, see §2) is determined by Ag, so a poor resolution of Ag
will inevitably lead to spurious palinstrophy dynamics, thereby returning unreliable
enstrophy dissipation rates. Nevertheless, serious attempts have been made with the
available resolutions to explore the problem of enstrophy decay, and interesting
predictions have been put forth. In particular, Dmitruk & Montgomery (2005), on
the basis of their extrapolation of simulated results for low Reynolds numbers to
higher ones, suggest that the enstrophy dissipation may vanish in the inviscid limit.

In this paper we show that this is indeed the case. More precisely, we show
that in the inviscid limit, the redistribution of vorticity from an initial reservoir
via an enstrophy spectrum no shallower than the classical k! spectrum results in
vanishing enstrophy dissipation. Essentially, the decrease of viscosity enhances the
production of both palinstrophy and its dissipation in such a way that the net growth
of palinstrophy is less rapid than the decrease of viscosity, resulting in vanishing
enstrophy dissipation. This result generalizes, for both an active scalar and a passive
tracer, advected by layerwise-two-dimensional turbulent flows governed by a rich class
of quasi-geostrophic models.

2. Mathematical background
2.1. Basic identities
By straightforward calculation we have

Multiplying this by ¢ and taking the spatial average of the resulting equation yields
(AqI (¥, q)) = (g AT (V. q)) = (g (¥, q.)) + (g (¥y. 4y)), (2.2)

where the identity (qJ (¥, Aq)) = —(AqJ(¥, q)) has been used.

2.2. Decaying Casimirs

In the absence of the viscous term, (1.1) expresses material conservation of g. This
gives rise to an infinite class of conserved quantities. In general, the average value
(f(gq)) of an arbitrary twice differentiable function f(g) is conserved. These invariants
are known as Casimirs, and we shall adopt this terminology below.

Under viscous effects, a wide class of these Casimirs decays in time. Here the term
‘decays’ is used in a liberal sense: a positive Casimir decays if it suffers a negative
growth rate, regardless of the functional form of the resulting viscous term. In general,
if f(g) > 0 is convex, i.e. f”(g) > 0, then (f(q)) decays. This can be seen from the
evolution equation of { f(g)),

S @) = (@) = @1 a) + v (@)Ag)
= (Wf"(@)J(q.9) = v{f"(@)Vql)
= —v(f"(q)IVql*), (23)
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where the right-hand side follows from integration by parts, upon which the triple-
product term identically vanishes. Therefore, d{f(g))/dt < 0 if f"(g) > 0, implying a
decay of {f(q)). This result applies to the case f(q) = |q|” for p > 1. For this case,
the following slightly varied version of (2.3),

d
a(lfi\”W” = —v(p — (lg1")"/""Hq|" Vg [*), (2.4)

gives explicit decay rates for the L” norms (|g|?)!/? . The most important decaying
quantities in this subclass are the L? norm (g?)'/? and L* norm |q|, the latter being
obtained by taking (|g|?)!/? to the limit p — oo. The L® norm appears to be better
conserved in practice than the L? norm, and may even be better conserved than the
energy. These two fundamental dynamical quantities appear repeatedly in subsequent
calculations.

2.3. An upper bound for the enstrophy dissipation rate v{|Vq|*)

The nonlinear transfer of vorticity to smaller scales necessarily results in a rapid
growth of vorticity gradients, and this growth is enhanced as v is decreased. However,
this growth of vorticity gradients must be accompanied by ever greater viscous effects
that work against such growth. The competition between vorticity gradient production
and viscous dissipation holds the key to understanding the present problem. The
outcome of this competition, according to Batchelor (1969), is that the enstrophy
dissipation rate v(|Vg|*) remains finite in the limit v — 0. This means that (|Vg|?)
diverges as v~! in that limit. Recently, Tran (2005) has shown that, for so long as the
rate of enstrophy dissipation is increasing, it remains bounded above by a quantity
that depends only on the initial vorticity distribution: v(|Vg[*) < [g(0)ll, {(¢*(0)).
This upper bound applies during palinstrophy growth, including the palinstrophy
peak. This result is consistent with Batchelor’s prediction, but does not rule out the
possibility v{|Vg|*) — 0 in the limit v — 0. In fact, further analyses based on this
result, carried out below, suggest the realizability of this possibility.

We now re-derive the aforementioned upper bound, which is the basis for subsequent
analyses. By multiplying (1.1) by Ag and taking the spatial average of the resulting
equation, we obtain the equation governing the evolution of the palinstrophy (|Vg|?)/2,

~—(IVq*) = (AqJ (¥, q)) — v{|Ag]?)

= (¢J (¥, a2)) + (@I (¥, 4,)) — v(|Agl)
(lg] (IV¥lIVa:l + [V, [[Vg,])) — v(lAgl?)
gl IVl + IV 1) (Vs + Vg, )72 — v(| Ag )

= llgll,. (¢*)"*(1ag)"? — v(|1Agl?)

= (1ag1))" (lgll.. (¢*)'* = v{|ag?) ') . (2.5)
The triple-product term |g| (¢?)"/*(|Aq|*)!/* represents an upper bound for the
production rate of (|Vg|?)/2. In (2.5), the second equation is obtained via the identity
(2.2) and all other steps are straightforward. This equation is the basis for the

analyses in the next section. Applying the Cauchy-Schwarz inequality {|Vg|?) <
(|Ag )2 {g>)' to (2.5) yields

<
<

(l1Aq]?)
(g%

1d 172
§E<|VQ|2> < < ) (Igll, {g*) — v{IVg|*). (2.6)
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Since both ||g|,, and () decay with time, it follows that if v(|V¢|*) < |g|, (¢*) holds
for t = 0, then

v(|Vgl*) < lg(0)l., (¢*(0)) for 1> 0. 2.7

3. Enstrophy dissipation in the limit v — 0

This section contains further analyses of (2.5) by a semi-analytic method. The
essential idea is to exploit the delicate balance between the production and dissipation
of palinstrophy. This balance has been lost in (2.6) after the employment of the
Cauchy-Schwarz inequality, which can be excessively generous in the present context,
effectively giving an edge to the palinstrophy production term. One can see that this
inequality is sharp when ¢ is spectrally supported by a narrow band of wavenumbers
(becoming an equality only when the support consists of a single wavenumber) and
becomes increasingly excessive when the support becomes increasingly broader. Now
the growth of (|Vg|?) from a band-limited initial reservoir by direct enstrophy transfer
is precisely the mechanism for the Cauchy-Schwarz inequality to become excessive.
By sacrificing a reasonable degree of rigour, we derive estimates that are sharper than
(2.6), allowing us to deduce that the enstrophy dissipation vanishes in the inviscid
limit. This result means that the transition from viscous to inviscid dynamics is
‘smooth’ and helps to resolve the fundamental and long-standing question of whether
two-dimensional turbulence at high Reynolds numbers can be meaningfully described
by the two-dimensional Euler equations.

3.1. Preliminaries

For the remainder of this paper, approximate power-law enstrophy spectra will be
assumed for the enstrophy inertial range, followed by a steeper dissipation range.
This assumption is customary in the study of turbulence and seems reasonable for
a high-Reynolds-number inertial range whose spectrum represents an average over
a vast number of wavenumbers. This assumption is even more plausible within a
statistical framework, which can be formulated in a straightforward manner for the
present problem. Consider an ensemble of vorticity reservoirs, possibly with quite
different levels of bounded energy and enstrophy. Let us denote by X the average,
taken over the ensemble, of a dynamical quantity X. From the penultimate line in
(2.5) we can deduce that

1d 12, —5 12  ——1p

53 VaP) < (18qP) " (lall (@)~ = v{IAqP) ). (3.1)
This has the same form as (2.5), azpart from minor differences coming from the
ensemble mean over the product ||gl|;, (g?).

Henceforth, we consider (2.5) without loss of generality. Since the first term in the
brackets on the right-hand side of the final line of (2.5) is bounded from above in
terms of initial data and independent of the Reynolds number, the net growth of
palinstrophy in the limit v — 0 may not be so dramatic and depends critically on how
(|Agq|?) responds to that limit. In order to explore the outcome of the competition
between the palinstrophy production and dissipation, we rewrite (2.5) in the form

li 2 (lag?) 24172 (Ivql*) v 2
Ve < ol (a2 V00 —wval)) . G2

During the period (or periods) of palinstrophy growth, the enstrophy dissipation is
bounded from above by the first term in the brackets. The global maximum of the
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enstrophy dissipation is also bounded in the same manner, i.e.

v(|Vg*) < lgll,, <q2>1/2<<|V112>

TAqPI2 (3.3)

Suppose that v(|Vg|*) — x > 0 as v — 0, then x is also a lower bound for the term
on the right-hand side of (3.3). But it is quite easy to find examples of power-law
spectra such that both the palinstrophy diverges and the right-hand side of (3.3)
vanishes. Such spectra are therefore incompatible with a finite enstrophy dissipation.
This means that these spectra could be achieved only in the presence of vanishing
enstrophy dissipation. This argument turns out to cover virtually all spectra of interest,
which are examined in what follows.
We allow for mean-square vorticity spectra of the form

Ck? ifky<k<k,,

ot = { D) if k >k, G4)

where the power-law scaling Ck—* is assumed for the inertial range [ko, k,], followed
by a steeper spectrum D(k) in the dissipation range. We further assume a divergence
of k, in the inviscid limit{ and that

k, o0

C / k*F dk = ¢! / k*D(k) dk, (3.5)
ko ky

where ¢ is a constant of order unity. This means that in the inviscid limit the inertial

range becomes infinitely wide and that the enstrophy is most strongly dissipated

around k, or beyond. For ¢ = 1, (3.5) states that as much enstrophy dissipation is

occurring for k > k, as for k < k,. We could indeed define &, by the condition ¢ = 1.

We pause to remark that the true spectrum may fluctuate about the ideal power
law assumed, even for an ensemble of vorticity reservoirs. This is permissible in the
present analysis so long as the fluctuations are bounded by the ideal spectrum as k
tends to k,, specifically over a sufficiently broad range of wavenumbers contributing to
the integrated spectra. In other words, our principle assumption is that the fluctuations
contribute less to the integrated spectra than do the ideal power-law parts. This appears
reasonable on statistical grounds, since the sample size of wavenumbers in a shell
of constant k increases like k itself, implying that fluctuations diminish (assuming
approximate isotropy) relative to the ideal spectrum. Numerical results at very high
Reynolds numbers support this assumption, see Dmitruk & Montgomery (2005).
Here, we can even tolerate fluctuations which remain comparable to but marginally
less than the ideal power-law spectra considered.

A range of values for B exhausting all possibilities is considered. Since we are
interested in the limit (|Vg|*) — oo, the case B > 3 can be excluded a priori since
this case corresponds to (|[V¢g|?) < oo because its spectrum k> Q(k) is steeper than k1.
On physical grounds, we also ignore the case 8 < 1 since this would violate the dual
conservation of energy and enstrophy. The reason is that the assumed inertial-range
enstrophy spectrum, when shallower than k!, either has a given amount of energy
(around k¢) and an arbitrarily large amount of enstrophy (around k, — o0) or has
a given amount of enstrophy (around k, — o0) and an arbitrarily small amount of
energy (around k). Hence a given reservoir of finite energy and enstrophy cannot

+ The manner in which k, diverges and details of the spectrum in the dissipation range are
interesting, but immaterial for the present arguments.
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possibly relax into such a spectrum. More rigorously, the characteristic wavenumber
s = ((Ig*)/{V¥*))"/? can only decay in time (Tran & Shepherd 2002), which forbids
the enstrophy spectrum becoming shallower than k.

Now the redistribution of enstrophy via a spectrum shallower than k~! over a
limited wavenumber interval [k, k;], followed by a range [ki, k,] steeper than k!
(plus a still steeper dissipation range) cannot be logically excluded. However, we
will see that this case can be treated in the same way as the assumed case (3.4)
with 1 < B < 3 since the contributions by k € [k, k;] to the palinstrophy and to
its dissipation are negligible compared with those by & > k; in the limit k£, — oo.
In summary, we can restrict our consideration to the assumed spectrum (3.4) with
1 < B < 3. Finally, if one abandons the usual notion of power-law scaling, then
the picture of an initial reservoir evolving into an extremely polarized spectrum
with energy residing at the lower-wavenumber end and enstrophy residing at the
higher-wavenumber end (with virtually nothing in between) cannot be ruled out. The
implication of this hypothetical picture for the enstrophy dissipation in the inviscid
limit will be discussed at the end of this section, after exhausting other possibilities.

3.2. The case B > 1
By definition we have

_ _ Sap— -8
<q2>—/Q(k)dk—C/k ﬁdk_ﬁ_lko

(valid for k, — oo). It follows that C = (8 — 1)ki~'(¢?). For g < 3, the quantities
(IVg[?) and (|Aq|?)"* are estimated as follows:

ky o0
(IVgq*) = /sz(k)dk = c/ k*—# dk+/ k*D(k)dk = c;j; K (3.6)
k() kv

and

12 1/2 ky oS 1/2
(1ag)'"” = (/k“Q(k)dk) = (c/ k*P dk+/ k4D(k)dk)
ko ky

ky, 0 172 1/2
v C Cc

c/ K+ dk—l—kf/ k> D(k dk) = ( kF +k3—ﬂ)

( ko k, : S—8 3-8

=
=c' (1 +5- )1/2 K3PEPD, (3.7)
5—B 3-8 o
With (3.6) and (3.7) the upper bound (3.3) becomes
v([Vql?) < €2k gl (g7)', (3.8)

where a dimensionless factor of order unity has been dropped. For 8 > 1 the right-
hand side of (3.8) vanishes as k, — oo. Hence, in the limit v — 0, if the turbulence
evolves while maintaining this spectral slope and if k, — oo, then the enstrophy
dissipation vanishes in that limit. (Note that a finite k, would correspond to a finite
palinstrophy, which would further imply vanishing enstrophy dissipation.)

For the marginal case 8 = 3, we have (|Vg|?) ~ C In(k,/ko) and (|Ag?)"* ~ C'/?k,,
and the arguments of vanishing enstrophy dissipation in the preceding paragraph
apply without change.
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3.3. The classical case 8 =1
There remains the critical case 8§ = 1, which is the classical prediction. For this case,
C is given by C = (¢?)/In(k,/ko) (ignoring the contribution to the enstrophy from
D(k), which would result in a constant of order unity in the denominator), and the
two estimates (3.6) and (3.7) become

_(140){g?) o)

(IVq*) = Ttk ko) (3.9)
and
(AagP) = (1+ 2¢)2(g?)"? _ (3.10)
2[In(k,/ko)]'/> "
The upper bound (3.3) takes the form
wvgP) < Lk te) G.11)

= [In(k, / ko) /2’

where a dimensionless factor of order unity has been dropped. Since In(k, / ko) diverges
as v — 0, (3.11) implies vanishing enstrophy dissipation as before. Note that v(|Vg|?)
may approach zero, as v — 0, far more slowly than in the previous case.

It can be seen that the conclusion of vanishing enstrophy dissipation applies to
the case of the log-corrected spectrum considered by Kraichnan (1971). One may
consider this spectrum as marginally steeper than k~!, which the preceding and
present subsections have covered.

The upper bound (3.11) readily allows one to deduce how the enstrophy dissipation
decreases with viscosity. We first estimate the ratio &,/ ko in terms of known quantities.
By (2.5), at the palinstrophy peak we have

1/2 1/2
"2 < gl (g (3.12)

Substituting (3.12) into (3.10) and solving for k,, neglecting the constant factor of
order unity, yields

v(|Agl?

2
< gl ne,/ kol

k, vl2

(3.13)

We now replace ko by the enstrophy centroid wavenumber s = <q2>1/2/<|V1//|2>1/2.

This is equivalent to saying that most of the enstrophy is directly transferred from s
to the higher wavenumbers. The ratio k,/kq can then be estimated by

1/2
ke gl

ko 12"

(Preliminary calculations indicate that this estimate for &, is comparable to that found
from setting ¢ = 1 in (3.5).) Substituting this ratio into (3.11) yields

(3.14)

lgll.. (a®)
v{IVal) < (ko7 (3.15)

where the Reynolds number Re takes the form

Re = % (3.16)
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This result qualitatively describes the dependence of the enstrophy dissipation on
Re. In the limit Re — oo, the enstrophy dissipation approaches zero no slower
than (In Re)~!/2. Incidentally, Dmitruk & Montgomery (2005) suggest the dependence
(In Re)™! of the enstrophy dissipation on the Reynolds number.

Finally, for the sake of completeness, the hypothetical state mentioned in §3.1 of
an energy—enstrophy ‘dipole’ developed from an initial reservoir is examined. Let us
now denote by k, the wavenumber around which the enstrophy ‘monopole’ resides. In
this case we have (|Vq|?) ~ (¢?)k? and (|Aq|?*) ~ (¢*)k?, and the above arguments of
vanishing enstrophy dissipation would fail. Note that this state requires not only the
enstrophy but also both the palinstrophy and its dissipation to be sharply confined
around k,. We know of no theoretical or numerical evidence for the persistence of
such a state.

4. Generalization to quasi-geostrophic flows

We now allow ¢ to be a general scalar, either an active scalar or a passive tracer,
advected by layerwise-two-dimensional turbulent flows governed by a rich class of
quasi-geostrophic models. In what follows we discuss several cases, to which the
results in §2 and § 3 can be readily extended.

The case g = A¥(x, y,z,t) corresponds to a quasi-geostrophic model, which is
derived under the assumption that both the buoyancy and rotation frequencies are
constant and with the vertical coordinate scaled by their ratio (see Gill 1982, p. 530;
Reinaud, Dritschel & Koudella 2003). Periodic boundary conditions are conveniently
extended to the vertical dimension and the Laplacian is accordingly extended. This
means that ¢ (known as the potential vorticity) is horizontally advected by the two-
dimensional incompressible velocity field (—,, ¥,), but homogeneously diffused in
three-space. The z-dependence of ¢ and v introduces the additional term (g J (v, q.))
to the right-hand side of (2.2), requiring (2.5) to be modified accordingly. However,
such minor modifications do not alter the final results and conclusions. More precisely,
the constraint (2.7) and all arguments in §3 remain unaltered.

A different form of the potential vorticity, g = (A — A?)¥(x, y, t), arises from a
popular quasi-geostrophic shallow-water model known as the Charney—Hasegawa—
Mima model (see Tran & Dritschel 2006 and references therein). In this case, the
enstrophy is not conserved but bounded from above by (|Ay|?) < (Ayqg) < (g?),
where (Avrq)/2 is known as the potential enstrophy, which is not a decaying Casimir
but nevertheless a decaying quadratic. With this upper bound, the constraint (2.7)
and the arguments in § 3 remain intact. For sharper estimates one can replace () by
(Avrq) in (2.5), and by doing that the constraint (2.7) becomes

v(IVg[?) < llg(0)],, (A¥(0)q(0))"*(g>(0))"". (4.1)

The active scalar ¢q=(—A)*y(x,y,t), for a>0, was first considered by
Pierrehumbert, Held & Swanson (1994) as a generalized version of the usual vorti-
city Ayr. Besides this popular case, there are two other physically relevant cases,
g = (—A)'?y and g = (—A)*?y, the former of which has been widely studied (see
Tran 2006 and references therein). The scalar ¢ = (—A)/?y, corresponding to a = 1,
represents the surface temperature in the so-called surface quasi-geostrophic model.
The scalar ¢ = (—A)¥?, corresponding to o = 3, appears in the equation governing
a shallow flow in a rotating domain with uniform internal heating. For general
a > 0, the advective term conserves the two quadratic quantities (|(—A)¥4y|?) and
(%) = (|(=A)¥*y|?), both of which decay under diffusive effects. The enstrophy is one
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of the invariants for @ = 2, 4, the former being the two-dimensional Navier—Stokes
case. For o = 4, the constraint (2.7) becomes

v(IVg?) < llg(0)l, ([AY(0)1*)*(g*(0)) "2, (4.2)

and the arguments of vanishing diffusion remain valid. For « € (2, 4), the enstrophy is
no longer conserved by nonlinear transfer. However, it can be bounded from above in
terms of the two invariants. Namely, we have (|Ay|?) < (|(=A)*/ 4y )24 (g?)¥/e—!
(see Tran 2004). With this upper bound, the constraint (2.7) takes the form

v(IVg ) < llg(O)ll,. (I(—=2)"*y(0)*)/*(g(0))>*. (4.3)

Again the arguments of vanishing diffusion remain valid. When « ¢ [2, 4], enstrophy
is expected to be generated by nonlinear transfer (see Tran 2004). This jeopardizes
the enstrophy boundedness as v — 0, and the present results cannot be guaranteed
to hold without further consideration.

Finally, for a passive tracer g advected by two-dimensional flows having bounded
enstrophy — but otherwise either forced-dissipative or decaying or unforced and
inviscid — all the results in §2 and §3 apply with minor modifications. In particular,
(2.7) becomes

(Vg% < llg(O)ll,, (|AW )37 (g*(0)'72, (4.4)

where (|Av|?)) denotes the maximum over time of the fluid mean-square vorticity.

5. Concluding remarks

The nature of enstrophy dissipation in the inviscid limit of the two-dimensional
Navier—Stokes equations has been a long-standing problem in classical fluid
mechanics. Batchelor (1969) assumed a finite enstrophy dissipation, and used scaling
arguments to predict a k~' form of the enstrophy spectrum in the inertial range. Here,
we have shown that the balance between palinstrophy production and dissipation is
delicate: further constraints not used by Batchelor (1969) indicate that the growth of
palinstrophy (mean-square vorticity gradients) as the viscosity v — 0 is marginally
less rapid than the decrease of viscosity. This is because the nonlinear term responsible
for the production of palinstrophy is proportional to {|Ag|?)!/?, which is relatively
weak compared to the viscous dissipation term v(|Ag|?). Ultimately, as v — 0, viscous
dissipation of palinstrophy remains able to counter-balance the nonlinear production
of palinstrophy, resulting in vanishing enstrophy dissipation. For Batchelor’s spectrum,
the dissipation is bounded by (InRe)~!/? as the Reynolds number Re — oo, an
extraordinarily weak dependence. But for any steeper spectrum, the dissipation
vanishes much more rapidly. This applies to a number of theories that do not
rely on the assumption of finite enstrophy dissipation and suggest spectra steeper
than Batchelor’s spectrum (see Saffman 1971; Sulem & Frisch 1975; Moffatt 1987).
In short, there may be no link between enstrophy dissipation in two-dimensional
turbulence and energy dissipation in three-dimensional turbulence as envisioned by
Batchelor (1969).

Batchelor (1969) used the expected finite value of enstrophy dissipation in his scaling
argument to arrive at the k~! enstrophy spectrum. Perhaps Batchelor’s argument is
not so sensitive to the extraordinarily weak dependence of enstrophy dissipation on
Reynolds number that we have found here. In fact if we replace the limiting value of
the enstrophy dissipation by the non-zero maximum enstrophy dissipation achieved
for a particular Re, Batchelor’s scaling analysis may still apply.
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Vanishing dissipation of scalar variance occurs in a wide variety of geophysical
fluid models, including the Charney—Hasegawa—Mima model describing a shallow-
water fluid with a free surface, the o turbulence model for 2 < o < 4, and the
three-dimensional quasi-geostrophic model with constant buoyancy and rotation
frequencies. The scalar may be active (as in the case of potential vorticity) or passive.
In the latter case, the background flow need only have bounded mean-square vorticity.

We are grateful for the feedback received from three anonymous referees.

Note added in proof: While the paper was in press we became aware of an
independent mathematical demonstration of vanishing enstrophy dissipation by
Lopes, Mazzucato & Lopes (2006), following on from Eyink (2001) and Di Perna &
Lions (1989).
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